EE263 - Introduction to Linear Dynamical Systems

Applied linear algebra and linear dynamical systems with applications to circuits, signal processing, communications, and control systems. Topics: least-squares approximations of over-determined equations, and least-norm solutions of underdetermined equations. Symmetric matrices, matrix norm, and singular-value decomposition. Eigenvalues, left and right eigenvectors, with dynamical interpretation. Matrix exponential, stability, and asymptotic behavior. Multi-input/multi-output systems, impulse and step matrices; convolution and transfer-matrix descriptions. Control, reachability, and state transfer; observability and least-squares state estimation. Prerequisites: Linear algebra and matrices as in ENGR 108 or MATH 104; ordinary differential equations and Laplace transforms as in EE 102B or CME 102.
Career
Graduate
Grading Basis
ROP - Letter or Credit/No Credit
Min
3
Max
3
Course Repeatable for Degree Credit?
No

Course Component
Lecture
Enrollment Optional?
No