STATS216
Download as PDF
Introduction to Statistical Learning
Statistics
H&S - Humanities & Sciences
Course Description
Overview of supervised learning, with a focus on regression and classification methods. Syllabus includes: linear and polynomial regression, logistic regression and linear discriminant analysis;cross-validation and the bootstrap, model selection and regularization methods (ridge and lasso); nonlinear models, splines and generalized additive models; tree-based methods, random forests and boosting; support-vector machines; Some unsupervised learning: principal components and clustering (k-means and hierarchical). Computing is done in R, through tutorial sessions and homework assignments. This math-light course is offered via video segments (MOOC style), and in-class problem solving sessions. Prereqs: Introductory courses in statistics or probability (e.g., Stats 60 or Stats 101), linear algebra (e.g., Math 51), and computer programming (e.g., CS 105). May not be taken for credit by students with credit in STATS 202 or STATS 216V.
Grading Basis
ROP - Letter or Credit/No Credit
Min
3
Max
3
Course Repeatable for Degree Credit?
No
Course Component
Lecture
Enrollment Optional?
No
Does this course satisfy the University Language Requirement?
No
Courses
STATS216
is a
antirequisite
for:
Programs
STATS216
is a
completion requirement
for:
- (from the following course set: )
- (from the following course set: )
- (from the following course set: )