CME323

Download as PDF

Distributed Algorithms and Optimization

Course Description

The emergence of clusters of commodity machines with parallel processing units has brought with it a slew of new algorithms and tools. Many fields such as Machine Learning and Optimization have adapted their algorithms to handle such clusters. Topics include distributed and parallel algorithms for: Optimization, Numerical Linear Algebra, Machine Learning, Graph analysis, Streaming algorithms, and other problems that are challenging to scale on a commodity cluster. The class will focus on analyzing parallel and distributed programs, with some implementation using Apache Spark and TensorFlow. Recommended prerequisites: Discrete math at the level of CS 161 and programming at the level of CS 106A.

Grading Basis

ROP - Letter or Credit/No Credit

Min

3

Max

3

Course Repeatable for Degree Credit?

No

Course Component

Lecture

Enrollment Optional?

No

Does this course satisfy the University Language Requirement?

No

Programs

CME323 is a completion requirement for:
  • (from the following course set: )
  • (from the following course set: )